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We study the statistical properties of many Brownian particles under the influence of both a spatially
homogeneous driving force and a periodic potential with period � in a two-dimensional space. In particular, we
focus on two asymptotic cases �int�� and �int��, where �int represents the interaction length between two
particles. We derive fluctuating hydrodynamic equations describing the evolution of a coarse-grained density
field defined on scales much larger than � for both cases. Using the obtained equations, we calculate the
equal-time correlation functions of the density field to the lowest order of the interaction strength. We find that
the system exhibits long-range correlation of the type r−d �d=2� for the case �int��, while no such behavior
is observed for the case �int��.
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I. INTRODUCTION

To derive a description of macroscopic phenomena on the
basis of a microscopic model is an important problem in
statistical physics. In equilibrium systems, equilibrium statis-
tical mechanics provides a clear solution to this problem.
However, when a system is out of equilibrium, even in a
nonequilibrium steady state, no general framework is known
except for linear response theory, which is applied to systems
close to equilibrium �1�. Here, let us recall Boltzmann’s sig-
nificant research that led to the genesis of equilibrium statis-
tical mechanics. He arrived at his famous formula by analyz-
ing the simplest system, a dilute gas, thoroughly. Thus, in
order to approach nonequilibrium statistical mechanics, we
investigate a simple nonequilibrium system by exploring the
relation between microscopic and macroscopic descriptions.

Let us consider a system in which many submicrometer
particles are driven by an external force in a solvent. The
force consists of both a spatially homogeneous driving force
and the force generated by a spatially periodic potential. It
has been known that such a system can exhibit phenomena
out of local equilibrium and that it can be designed for ex-
periments due to the recent development of the optical tech-
nology used in controlling and measuring particles �2,3�. The
system also provides a typical example of the so-called
driven diffusive system �4,5�. Theoretically, there exists a
case that the motion of the particles is accurately described
by a Langevin equation. In this system, we can investigate
macroscopic phenomena both by a laboratory experiment
and by an analysis of the basis of the Langevin equation that
is regarded as a microscopic model. In particular, the system-
atic calculation of macroscopic quantities from the micro-
scopic model is the first step in developing a new framework
of nonequilibrium statistical mechanics.

Macroscopic phenomena in driven diffusive systems have
been described phenomenologically within a framework of
fluctuating hydrodynamics �5–7�. The dynamical variable in

this description is a density field, and its evolution equation
is assumed to take the simplest form under the imposed
physical requirements. For example, it is assumed that the
evolution equation for the density field in driven diffusive
systems possesses an anisotropic nature and no detailed bal-
ance condition. With this simple assumption, the existence of
a long-range correlation in driven diffusive systems was pre-
dicted even in a linear model �7,8�. Furthermore, the anoma-
lous behavior of the space-time correlation function of den-
sity fluctuations has been studied by analyzing a nonlinear
model for driven diffusive systems �9,10�.

It is expected that the macroscopic behavior in driven
Brownian particle systems is described by a fluctuating hy-
drodynamic equation. We then address a problem to quanti-
tatively derive the form of fluctuating hydrodynamic equa-
tions on the basis of a microscopic model describing the
motion of the particles. If this problem is solved, we can
calculate the correlation function of density fluctuations by
using the obtained fluctuating hydrodynamic equation. Then,
the calculation result is more quantitative than that by a fluc-
tuating hydrodynamic equation assumed phenomenologi-
cally. In general, it is believed that the equal-time correlation
function in d-dimensional driven diffusive systems exhibits
the power-law behavior of the type r−d in the long-distance
regime and has a short-range part that deviates from the cor-
relation determined by equilibrium statistical mechanics.
However, recently, it has been shown that this type of long-
range correlation does not appear in some lattice gases �11�.
Further, the short-range part of the correlation is connected
with an extended thermodynamic function in driven lattice
gases �12,13�. Therefore, it is important to calculate a con-
crete form of the correlation function for driven Brownian
particle systems.

Taking these into consideration, in this paper, we derive
evolution equations of a coarse-grained density field from a
many-body Langevin equation describing the motion of
Brownian particles under a nonequilibrium condition. We
first note that the many-body Langevin equation is equiva-
lent to a nonlinear fluctuating equation for the density field
�14�. To the latter equation, we apply a system reduction
method in order to describe the large-scale dynamics of the
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density field �15,16�. As a result, we obtain the evolution
equation of the coarse-grained density field and we calculate
the equal-time correlation function. Furthermore, with regard
to the calculation method, we extend a standard system re-
duction method so as to analyze a stochastic partial differen-
tial equation. Therefore, we expect that this paper contributes
to the progress of such perturbation theory, too.

This paper is organized as follows. In Sec. II, we intro-
duce a Langevin equation describing the motion of many
Brownian particles under an external force. We then obtain a
nonlinear fluctuating hydrodynamic equation for the density
field. In Sec. III, we develop a perturbation method to derive
a coarse-grained fluctuating hydrodynamic equation and cal-
culate the equal-time correlation functions of density fluctua-
tions. Section IV is devoted to remarks on the present study.
The technical details are presented in the Appendixes.

II. MODEL

We study N Brownian particles suspended in a two-
dimensional solvent of temperature T. Let xi be the position
of the ith particle. Here, i is an integer satisfying 1� i�N.
We express the �th component of xi as xi�, with �=1,2.
That is, xi= �xi1 ,xi2�. In addition, x= �x1 ,x2� indicates a posi-
tion in the two-dimensional space, where 0�xi��L, and
periodic boundary conditions are assumed for simplicity.
Each particle is driven by an external force fe1= �f ,0� and is
subject to a periodic potential U�x1� with period � such that
L /� is an integer. For simplicity, we assume that the periodic
potential is independent of x2. Furthermore, we express the
interaction between the ith particle and the jth particle by an
interaction potential u�xi−x j�. We assume that the function
u�r� decays to zero with a typical length �int. �̄=N /L2 repre-
sents the average density of the Brownian particles.

The motion of the ith Brownian particle is assumed to be
described by a Langevin equation

�
dxi�

dt
= � f −

�U�xi1�
�xi�

���1 −
�

�xi�
�

j=1,j�i

N

u�xi − x j� + Ri��t� ,

�1�

where � is a friction constant and Ri� is zero-mean Gaussian
white noise that satisfies

�Ri��t�Rj	�t��	 = 2�T��	�ij��t − t�� . �2�

It should be noted that without the periodic potential U,
the system is equivalent to an equilibrium system in a mov-
ing frame with velocity f /�. Thus, the periodic potential is
necessary for investigating the nonequilibrium nature. Note
that such a periodic potential can be implemented experi-
mentally by using an optical phase modulator �2,3�.

Now, we define the fine-grained density field as

�d�x,t� 
 �
i=1

N

�2
„x − xi�t�… . �3�

This satisfies the continuity equation

��d�x,t�
�t

= − �
�=1

2
�j��x,t�

�x�

, �4�

and the expression of current j��x , t� is derived from Eq. �1�
with Eq. �2� as follows:

j��x,t� =
�d�x,t�

� � f��1 −
�

�x�
�� �H

�
�x�
�


�x�=�d�x,t�
�


+�T�d�x,t�
�

���x,t� , �5�

where the real-valued functional H for a function 
�x� takes
the form

H�
� =� d2x 
�x�U�x� +
1

2
� d2x� d2 y
�x�u�x − y�
�y�

+ T� d2x
�x��ln 
�x� − 1� �6�

and ���x , t� in Eq. �5� represents zero-mean space-time
Gaussian noise satisfying

����x,t��	�x�,t��	 = 2��	�2�x − x����t − t�� . �7�

Throughout this paper, the multiplication of ���x , t� with a
usual function ��x , t� is interpreted as the Stratonovich rule
in the space variable and the Ito rule in the time variable. The
derivation of fluctuating hydrodynamic equations for the
fine-grained density was reported in Ref. �14�. We explain a
derivation method of Eq. �4� with Eqs. �5�–�7� in Appendix
A.

In the equilibrium case when f =0, the form of Eq. �5� is
understood by the following physical considerations. The
first term in Eq. �5� represents a drift caused by the gradient
of the chemical potential that is given by the functional de-
rivative of the potential H��d� with respect to �d. Here, the
functional form of H��d� may be physically interpreted by
noting that the third term in Eq. �6� represents the entropy
contribution of noninteracting particles.

The noise term in Eq. �5� can be understood from the fact
that the system with f =0 satisfies the detailed balance con-
dition. This is verified as follows. Let 
t be a small time
interval and Tr�
→
�� be the conditional probability of the
density profile 
��x� at time t+
t, provided the density pro-
file is 
�x� at time t. �Tr�
→
�� is referred to as the transi-
tion probability from 
 at time t to 
� at time t+
t.� For the
case f =0, using Eqs. �4�, �5�, and �7�, we calculate

Tr�
 → 
�� =
1

N
exp�− 
t� d2x


�x�
4�T

���
�H�
�
�
�x�

�2

− 
t� d2x
�

4T
�x���� 
−1�
��x� − 
�x�

t

�
2

−

t

2T
� d2x


��x� − 
�x�

t

�H�
�
�
�x�

+ O„�
t�2
…
 ,

�8�

where 
−1 is the Green function of the Laplacian operator
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and N is the normalization constant determined by

� D
�Tr�
 → 
�� = 1, �9�

where D�� represents a functional measure. From Eq. �8�,
we obtain

Tr�
 → 
��
Tr�
� → 
�

= exp�−
H�
�� − H�
�

T
+ O„�
t�2

…
 . �10�

Using Eqs. �9� and �10�, we derive

� D
PS�
�Tr�
 → 
�� = PS�
�� , �11�

where

PS��d� =
1

Zf
exp�−

H��d�
T


 . �12�

Equation �11� implies that PS��d� is a steady distribution
functional of the density profile �d. Then, Eq. �10� is rewrit-
ten as

PS�
�Tr�
 → 
�� = PS�
��Tr�
� → 
�exp�O„�
t�2
…� .

�13�

This is the detailed balance condition with respect to the
distribution given in Eq. �12�. It should be noted that �d in
the third term in Eq. �5� must not be replaced with its aver-
age value, because this replacement breaks the detailed bal-
ance condition.

In the nonequilibrium case, the effect of the external force
f is expressed only by the first term in Eq. �5� as a modifi-
cation of the gradient of the chemical potential. Although the
modification from the equilibrium case is minimum, the
modification breaks the detailed balance condition. There-
fore, we need to analyze the evolution equation in order to
obtain the steady probability distribution of the density field.

III. ANALYSIS

This section consists of four subsections. In Sec. III A, we
present the basic framework of our perturbation method. In
Sec. III B, we investigate a noninteracting case as the sim-
plest example. We find that there is no long-range correlation
of the density field for the noninteracting systems. In Sec.
III C, we take into account the effects of the particle interac-
tion perturbatively. In particular, we focus on two asymptotic
cases �int�� and �int��. In Sec. III D, we calculate the
correlation functions of the density field for the two cases
and demonstrate that there exists the long-range correlation
of the type 1/rd only for the case �int��.

A. Basic framework

We analyze the nonlinear fluctuating hydrodynamic equa-
tion given in Eq. �4� with Eqs. �5�–�7�. Our perturbation
method is based on the expansion of the weak interaction,
weak noise, and separation of length scales. In order to rep-
resent the expansion parameters explicitly, we replace

���x , t� and u�x−y� with ����x , t� and �u�x−y�, respec-
tively. We also set �
� /L. The parameters �, �, and � are
regarded as small parameters in our analysis.

With this setting, we first consider the case that �=0 and
�=0 in the equation to be analyzed. Because the evolution
equation is deterministic in this case, the density field relaxes
to the steady one �d

�0�, which satisfies

�̄vs = −
1

�
� �U�x1�

�x1
− f + T

�

�x1
��d

�0��x� , �14�

where vs represents the average velocity of the particle in the
steady state, and it is expressed as �17–19�

vs =
T

�
�1 − e−	f����

0

� dx1

�
I−�x1��−1

. �15�

Here, the function I±�x1� is defined as

I±�x1� = �
0

�

dx1� e±	U�x1��	U�x1�x1��−	fx1�. �16�

By using the condition

�
0

� dx1

�
�d

�0��x� = �̄ , �17�

we derive the solution of Eq. �14� as follows:

�d
�0��x� = ps�x1��̄ , �18�

where

ps�x1� =
1

Z
I−�x1� . �19�

The normalization factor Z is determined by the condition

�
0

�

dx1 ps�x1� = � . �20�

Now, we consider the case that ��0 and ��0. Based on
Eq. �18�, we set

�d�x,t� = ps�x1�q�x,t� . �21�

That is, the variable q�x , t� is equal to the average density �̄
when �=0 and �=0, and this variable represents the density
modulation caused by the noise and interaction. Substituting
Eq. �21� into Eqs. �4�, �5�, and �6� with the replacement
explained in the first paragraph in this subsection, we obtain
the evolution equation for q�x , t� as

�q�x,t�
�t

= M̂q�x,t� − �
1

ps�x1�
�T

�

�

�x
· ��ps�x1�q�x,t���x,t��

− �
1

ps�x1�
�

�x
· jint�x,t� , �22�

where the operator M̂ is calculated as

SYSTEMATIC DERIVATION OF COARSE-GRAINED¼ PHYSICAL REVIEW E 74, 031105 �2006�

031105-3



M̂ = �−
vs

ps�x1�
+

T

�

� ln ps�x1�
�x1

� �

�x1
+

T

�
� �2

�x1
2 +

�2

�x2
2�

�23�

and jint�x , t� is defined as

jint�x,t� =
1

�
ps�x1�q�x,t� � d2y

�u�x − y�
�x

ps�y1�q�y,t� ,

�24�

which represents a current generated by the particle interac-
tion.

Next, we notice the separation of length scales ���1�. We
pay attention to the density fluctuations on length scales of
the order of L and introduce the density field Q�X , t� with a
large-scale coordinate X=�x, while on length scales of the
order of � the periodic potential determines the system be-
havior. In order to express this in an explicit manner, we
introduce a phase variable � as �=mod�x1 ,�� �15,16�. Obvi-
ously, U���=U�x1� and ps���= ps�x1�.

The density fluctuations with a smaller wave number have
a longer time scale. Then, when we focus on a time scale
related to diffusion in the entire system, we assume that
Q�X , t� obeys an autonomous equation and that q�x , t�
−Q�X , t� depends on time t only through the density field
Q�X , t�. These assumptions are expressed as

�Q

�t
= ��Q� , �25�

q�x,t� = Q�X,t� + ���,Q� , �26�

where ��Q� represents a map providing a function of �X , t�
for the density field Q and ��� ,Q� represents a similar map
for each � �see Refs. �15,16��.

Hereinafter, we treat � and X as independent variables.
Then, when the spatial derivative acts on a function of �� ,X�,
it should be read as

�

�x
=

�

��
e1 + �

�

�X
. �27�

Furthermore, the two quantities ��x , t� and u�x� in Eq. �22�
with Eq. �24� can be expressed as �̄�� ,X , t� and ū�� ,X�,
respectively, by using a method presented in Appendix B.
Using this expression, Eq. �7� leads to

��̄���,X,t��̄	���,X�,t��	 = 2��	���� − ����2�2�X − X��

���t − t�� , �28�

as explained in Appendix B. Further, using ū�� ,X�, jint�x , t�
in Eq. �24� is expressed as

j̄int��,X,t� = ps����Q�X,t� + ���,Q��� �

��
e1

+ �
�

�X
� � d��

�
� d2Y

�2 ū�� − ��,X − Y�ps����

��Q�Y,t� + ����,Q�� , �29�

where we have used Eq. �B9�. Finally, M̂ can be expanded as

M̂ = M̂�0� + �M̂�1� + �2M̂�2�, �30�

where M̂�i� with i=0,1, and 2 are calculated as

M̂�0� = �−
vs

ps���
+

T

�

d ln ps���
d�

� �

��
+

T

�

�2

��2 , �31�

M̂�1� = �−
vs

ps���
+

T

�

d ln ps���
d�

+ 2
T

�

�

��
� �

�X1
, �32�

M̂�2� =
T

�
� �2

�X1
2 +

�2

�X2
2� . �33�

Using these, the substitution of Eqs. �25� and �26� into Eq.
�22� yields

��Q� +
��

�Q
· ��Q� = M̂�Q + ���,Q��

− �
1

ps���
�T

�
� �

��
e1

+ �
�

�X
� · ��ps����Q + ���,Q���̄��,X,t��

− �
1

ps���� �

��
e1 + �

�

�X
� · j̄int��,X,t� ,

�34�

where ��� /�Q� is the operator on a function 
�x� defined as

���,Q + 
� − ���,Q� =
��

�Q

�x� + O��
�2� , �35�

in the limit �
�→0 with an appropriate norm �·� of the func-
tion space. Recall that � is a map in the function space for
each �. Thus, the operator ��� /�Q� mathematically corre-
sponds to a Fréchet derivative when the function space is
properly defined. This should not be confused with the func-
tional derivative used in Eq. �5�.

Now, we derive ��Q� and ��� ,Q� by solving Eq. �34�
with the perturbation method. Because we assumed that �, �,
and � are small, we expand ��� ,Q� and ��Q� in these pa-
rameters. Specifically, setting �=�, we assume the form

���,Q� = ��1��,Q� + �2�2��,Q� + ¯ , �36�

��Q� = ��1�Q� + �2�2�Q� + ¯ . �37�

Furthermore, for both �i�� ,Q� and �i�Q�, we consider an
expansion with regard to �. In summary, we analyze Eq. �34�
with Eqs. �29�, �30�, �36�, and �37� and �=� and derive
�i�� ,Q� and �i�Q� iteratively. These calculations are shown
in Secs. III B and III C.

In order to make our perturbative calculation concrete, we
introduce a space F consisting of all complex-valued,
square-integrable, periodic functions of � on the interval
�0,��. We endow this space with the inner product
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��,	� = �
0

� d�

�
�*���	��� �38�

for � ,	�F, where � denotes the complex conjugation.

Since the operator M̂�0� is a linear map from F to F, we can
define all the eigenvalues � j and the corresponding eigen-

functions � j��� of the operator M̂�0� in F by the equation

M̂�0�� j��� = � j� j��� , �39�

where the index j=0, ±1, ±2, . . . is determined by the rela-
tions � j =�−j

* and �0=0�Re��±1��Re��±2��¯. When a
complex eigenvalue is degenerate, the corresponding label-

ing is modified appropriately. Because M̂�0� is not a Hermit-
ian operator, it is convenient to introduce the adjoint operator

of M̂�0�† through the relation

�M̂�0�†�,	� 
 ��,M̂�0�	� . �40�

In this space F, M̂�0�† is explicitly represented as

M̂�0�† =
�

��
� vs

ps���
−

T

�

d ln ps���
d�

+
T

�

�

��
� . �41�

Note that the set of eigenvalues of M̂�0�† is identical to that of

M̂�0�. Then, we denote the eigenfunctions of M̂�0�† as � j���
and choose their labeling such that

M̂�0�†� j��� = � j
*� j��� . �42�

We can choose these eigenfunctions such that the following
hold:

��i,� j� = �ij , �43�

�
j=−�

�
� j

*���� j����
�

= ��� − ��� . �44�

In particular, we choose the zero eigenfunctions as

�0��� = ps��� , �45�

�0��� = 1. �46�

B. Noninteracting system

We investigate the noninteracting system by setting �=0
in Eq. �34� with Eq. �28�. Equation �34� can then be rewritten
as

� +
��

�Q
· ��Q� = M̂�Q + ���,Q�� − �

1

ps���
�T

�
� �

��
e1

+ �
�

�X
� · ��ps����Q + ���,Q���̄��,X,t�� ,

�47�

for which we use the expansions given by Eqs. �30�, �36�,
and �37�. Selecting all the terms proportional to � in Eq. �47�,
we obtain

�1�Q� = M̂�0��1��,Q� + M̂�1�Q

−
1

ps���
�T

�

�

��
��ps���Q�X,t��̄1��,X,t�� . �48�

Here, �1�Q� and �1�� ,Q� are unknown functions. In order to
derive them, we set

s1��,Q� 
 �1�Q� − M̂�1�Q

+
1

ps���
�T

�

�

��
��ps���Q�X,t��̄1��,X,t��

�49�

and rewrite Eq. �48� as

M̂�0��1��,Q� = s1��,Q� . �50�

We can regard Eq. �50� as a linear equation with respect to �1
because s1�� ,Q� does not contain �1.

Since M̂�0� has a zero eigenvalue, M̂�0� is not invertible. In
this case there is no unique solution of �1 to Eq. �50� but
either no solution or an infinite number of solutions. Then, in
order to perform the perturbative calculation consistently, we
impose the solvability condition

��0,s1� = 0; �51�

under this condition, there exist solutions with an arbitrary
constant. This condition determines �1�Q� as

�1�Q� = ��0,M̂�1�Q� − ��0,
1

ps
�T

�
���psQ�X,t��̄1�· ,X,t��� ,

�52�

where � represents the partial derivative with respect to �.
We note that the second term in the right-hand side of Eq.
�52� is equal to zero �see Appendix B�. Then, substituting Eq.
�32� into Eq. �52�, we obtain

�1�Q� = − vs
�Q

�X1
. �53�

Under the solvability condition given by Eq. �51�, we can
derive the following solutions of the linear equation ex-
pressed by Eq. �50�:

�1��,Q� = �
n�0

�n���
− �n

��n,−
vs

ps
+

T

�
��ln ps�� �Q

�X1

+ �
n�0

�n���
�n

�TQ

�
��n,

1

ps
���ps�̄1�· ,X,t���

+ ��0��� . �54�

Here, � is an arbitrary constant. We set �=0 hereafter.
Next, we will determine �2�Q� and �2�� ,Q�. Using the

terms proportional to �2 in Eq. �47�, we obtain
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�2�Q� +
��1

�Q
· �1�Q� = M̂�0��2 + M̂�1��1 + M̂�2�Q

−
1

ps���
�T

�

�

��

���ps���
�1

2�Q
�̄1��,X,t��

−
1

ps���
�T

�

�

�X
��ps���Q�̄��,X,t�� .

�55�

In the same manner as that in the first-order calculation, we
impose the solvability condition for the linear equation of �2.
This yields

�2�Q� = ��0,M̂�1��1� + ��0,M̂�2�Q�

−�T

�

�

�X
· ��Q��0,

1
�ps

�̄�· ,X,t��
 . �56�

Using Eqs. �32� and �33�, we obtain

�2�Q� = D
�2Q

�X1
2 +

T

�

�2Q

�X2
2 −

�

�X1

�Q���X,t� + �1�X,t��

−
�

�X2

�Q�2�X,t� . �57�

Here, we calculate D, ��X , t�, and ���X , t� as

D = − �b,�−
vs

ps
+

T

�
��ln ps�
� +

T

�
, �58�

��X,t� =�T

�
��� b

ps
�,�ps�̄1�· ,X,t�� , �59�

���X,t� =�T

�
��0,

1
�ps

�̄��· ,X,t�� , �60�

where b��� is defined as

b��� 
 �
m�0

��0,�−
vs

ps
+

T

�
��ln ps� +

2T

�
�
�m

* ��m���
�m

* .

�61�

We find that b��� is a real function �see Eq. �C11��.
Now, we write the coarse-grained hydrodynamic equation

by defining

Q̃�x,t� 
 Q�X,t� , �62�

�1�x,t� 

1

�
���X,t� + �1�X,t�� , �63�

�2�x,t� 

1

�
�2�X,t� . �64�

Using these and from Eqs. �25�, �53�, and �57�, we obtain

�Q̃

�t
= − �

�=1

2
�J̃��x,t�

�x�

, �65�

with

J̃1�x,t� = vsQ̃�x,t� − D
�Q̃

�x1
+ �Q̃�x,t��1�x,t� ,

J̃2�x,t� = −
T

�

�Q̃

�x2
+ �Q̃�x,t��2�x,t� , �66�

where �� with �=1,2 satisfies

����x,t��	�x�,t��	 = 2B�	�2�x − x����t − t�� . �67�

The noise intensities B�	 are calculated as B12=B21=0 and

B11 =
T

�
�

0

� d�

�
ps���� d

d�
� b���

ps���
� + 1
2

, �68�

B22 =
T

�
. �69�

See Appendix C for the calculation.
Here, we present two remarks on the coarse-grained hy-

drodynamic equation given by Eq. �65� with Eqs. �66� and
�67�. The first remark is on the expression of D given by Eq.
�58�. Although the expression is complicated, we can rewrite
Eq. �58� as

D =
T

���0

� d�

�
I−����−3�

0

� d�

�
�I−����2I+��� �70�

using Eq. �16�. The derivation is presented in Appendix C.
This expression of the diffusion constant coincides with that
of the diffusion constant of a Brownian particle in the tilted
periodic potential �17–19�. Physically, this coincidence is ob-
vious, because we consider the non-interacting particles in
this subsection.

The second remark is on a special relation

B11 = D . �71�

The proof of this relation is presented in Appendix C. This
relation corresponds to the fluctuation-dissipation relation of
the second kind in this fluctuating hydrodynamic equation.
Using this property, in the same manner as that in Sec. II, we
can prove the detailed balance condition of the system in the
moving frame with velocity vs. From this condition, we find
the steady probability distribution functional of the coarse-
grained density field PS�Q� as

PS�Q� =
1

Zc
exp�−� d2x Q�x��ln Q�x� − 1�� . �72�

This implies that in the noninteracting system, the density
field does not exhibit a long-range spatial correlation even if
the system is out of equilibrium.

C. Weakly interacting system

In this subsection, we extend the analysis in the previous
subsection to a system consisting of interacting particles.
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Concretely, we expand �i�� ,Q� and �i�Q� in Eqs. �36� and
�37� as

�i��,Q� = �i0��,Q� + ��i1��,Q� + �2�i2��,Q� + ¯ ,

�73�

�i�Q� = �i0�Q� + ��i1�Q� + �2�i2�Q� + ¯ . �74�

Further, in order to make the calculation results explicit, we
consider two asymptotic cases: �i� �int�� and �ii� �int��. By
substituting Eqs. �73� and �74� into Eq. �34� with Eq. �24� for
the two cases, we determine �ik�� ,Q� and �ik iteratively.

1. Case (i)

We study the case �int��. Specifically, we assume that
�int�O��−1��, and then we set

ū��,X� = �2uL�X� . �75�

The factor �2 is introduced in order to develop a systematic
perturbation method. Substituting Eq. �75� into Eq. �29�, we
express the current generated by this interaction potential as

j̄int��,X,t� =
1

�
ps����Q�X,t�

+ ���,Q�� � d2Y �
�uL�X − Y�

�X
Q�Y,t� . �76�

Then, Eq. �34� with Eq. �29� becomes

��Q� +
��

�Q
· ��Q� = M̂�Q + ���,Q�� − �

1

ps���
�T

�
� �

��
e1

+ �
�

�X
� · ��ps����Q + ���,Q���̄��,X,t��

−
�

�
�

1

ps���� �

��
e1 + �

�

�X
� · �ps����Q

+ ���,Q�� � d2Y
�uL�X − Y�

�X
Q�Y,t�� .

�77�

We now analyze Eq. �77� with the expansions given by Eqs.
�30�, �36�, �37�, �73�, and �74�.

Selecting all the terms proportional to �, we obtain

�1�Q� = M̂�0��1 + M̂�1�Q −
1

ps���
�T

�

�

��
��ps���Q�̄1��,X,t��

−
�

�

1

ps���
�ps���

��
Q�X,t� � d2Y

�uL�X − Y�
�X1

Q�Y,t� .

�78�

The terms independent of � reproduce Eq. �48�. Thus,
�10�Q� and �10 are equal to �1�Q� and �1 given by Eqs. �53�
and �54�, respectively. Next, extracting all the terms propor-
tional to � in Eq. �78�, we obtain

M̂�0��11 = �11�Q� +
1

�

1

ps���
�ps���

��

�Q�X,t� � d2Y
�uL�X − Y�

�X1
Q�Y,t� . �79�

The solvability condition for the linear equation of �11 yields

�11�Q� = 0. �80�

Then, we can solve �11 as

�11��,Q� =
1

�
�
n�0

�n���
�n

��n,
1

ps
�ps�

�Q�X,t� � d2Y
�uL�X − Y�

�X1
Q�Y,t� , �81�

where the term proportional to �0��� is set to zero.
Next, using all the terms proportional to �2 in Eq. �77�

with the expansions, we calculate �20�Q� and �21�Q� by
repeating the same analysis. Obviously, �20�Q� is equal to
�2�Q� in Eq. �57�. Extracting the term proportional to ��2 in
Eq. �77�, we obtain

�21�Q� +
��11

�Q
· �10�Q� +

��10

�Q
· �11�Q� = M̂�0��21 + M̂�1��11

−
1

ps���
�T

�

�

��
��ps���

�11��,Q�
2�Q�X,t�

�̄1��,X,t�

−

1

�

1

ps���
�

��
�ps����10��,Q�� � d2Y

�uL�X − Y�
�X1

Q�Y,t�

−
1

�

�

�X
�Q�X,t� � d2Y

�uL�X − Y�
�X

Q�Y,t�
 . �82�

Then, the solvability condition for the linear equation of �21
yields

�21�Q� = ��0,M̂�1��11�

−
1

�

�

�X
· �Q�X,t� � d2Y

�uL�X − Y�
�X

Q�Y,t�� .

�83�

Substituting Eq. �81� into the first term on the right-hand side
of Eq. �83� leads to

��0,M̂�1��11� =
1

�
�b,

1

ps
�ps� �

�X1

��Q�X,t� � d2Y
�uL�X − Y�

�X1
Q�Y,t�� ,

�84�

where b��� is given by Eq. �61�. Here, we note the identity
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�b,
1

ps
�ps� − 1 = − �

0

� d�

�
ps���� �

��
� b���

ps���
 + 1�
= − ��

0

� d��

�
I−�����−2�

0

� d�

�
I−���I+���

= − �
dvs

df
, �85�

where we have used Eq. �C1� to obtain the third line and the
fourth line can be confirmed directly from Eq. �15� �see also
Ref. �19��. Using Eqs. �84� and �85�, we rewrite Eq. �83� as

�21�Q� = −
dvs

df

�

�X1
�Q�X,t� � d2Y

�uL�X − Y�
�X1

Q�Y,t�

−

1

�

�

�X2
�Q�X,t� � d2Y

�uL�X − Y�
�X2

Q�Y,t�
 .

�86�

Finally, we derive the coarse-grained hydrodynamic equa-
tion from Eqs. �25�, �53�, �57�, �80�, and �86�. Using the
variable defined in Eqs. �62�, �63�, and �64� we obtain the

continuity equation for Q̃�x , t� expressed by Eq. �65� with the
current as follows:

J̃1�x,t� = vsQ̃�x,t� − D
�Q̃

�x1
+ �Q̃�x,t��1�x,t� + �

D

T
�1

− ��Q̃�x,t� � d2y
�u�x − y�

�x1
Q̃�y,t� ,

J̃2�x,t� = −
T

�

�Q̃

�x2
+ �Q̃�x,t��2�x,t�

+ �
1

�
Q̃�x,t� � d2y

�u�x − y�
�x2

Q̃�y,t� , �87�

where � is the dimensionless parameter defined as

� 
 1 −
T

D

dvs

df
. �88�

The Einstein relation leads to �=0 when f =0, while ��0
when f �0 as far as we checked numerically �see Ref. �19��.

When �=0, by using a similar argument as that in Sec. II,
we can prove the detailed balance condition of the system in
the moving frame with velocity vs. However, when ��0, the
coarse-grained hydrodynamic equation does not possess the
detailed balance property for any moving frame because we
cannot construct a potential function such as H for the argu-
ment in Sec. II. It should be noted that the noise intensities
are not modified by the lowest order contribution of the in-
teraction effects. Therefore, the fluctuation-dissipation rela-
tion of the second kind is maintained in this hydrodynamic
equation.

2. Case (ii)

Next, we study the case �int��. We assume the form

ū��,X� = u0������2�2�X� , �89�

where the intensity u0 is determined from the interaction po-
tential with �int��. Here, we set u0=�uS in order to develop
a systematic perturbation. Note that the quantity u0 should
appear when we calculate experimentally measurable quan-
tities. Substituting Eq. �89� into Eq. �29�, we obtain

j̄int��,X,t� = �
uS

�
ps����Q + ���,Q��� �

��
e1 + �

�

�X
��ps����Q

+ ���,Q��� . �90�

Then, Eq. �34� with Eq. �29� becomes

��Q� +
��

�Q
· ��Q� = M̂�Q + ���,Q�� − ��T

�

1

ps���� �

��
e1

+ �
�

�X
� · ��ps����Q + ���,Q���̄��,X,t��

− �
�uS

�

1

ps���� �

��
e1 + �

�

�X
� · �ps����Q

+ ���,Q��� �

��
e1 + �

�

�X
�ps����Q

+ ���,Q��� . �91�

We analyze Eq. �91� using the expansions given in Eqs. �30�,
�36�, �37�, �73�, and �74�.

The calculation procedures hereafter are the same as that
for case �i�. Thus, without repeating the calculations, we
summarize the results as follows:

�11�Q� = 0, �92�

�11��,Q� = Q2uS

�
�
n�0

�n���
�n

��
0

� d��

�

�n
*����

ps����
d

d��
�ps����

dps����
d��


 , �93�

�21�Q� = −
�

�X1
��̄Q2�X,t�� , �94�

where �̄ is defined as

�̄ =
uS

� ��0

� d�

�
I−����−1�

0

� d�

�
ps���I+���

dps���
d�

. �95�

Note that in the equilibrium case �f =0�, �̄=0 because
ps���I+��� is equal to unity when f =0.

Finally, we derive the coarse-grained hydrodynamic equa-
tion from Eqs. �53�, �57�, �92�, and �94�. Using the variable
defined by Eqs. �62�, �63�, and �64�, we obtain the continuity

equation for Q̃�x , t� expressed by Eq. �65� with the current as
follows:
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J̃1�x,t� = vsQ̃�x,t� − D
�Q̃

�x1
+ �Q̃�x,t��1�x,t� + ��Q̃2�x,t� ,

J̃2�x,t� = −
T

�

�Q̃�x,t�
�x2

+ �Q̃�x,t��2�x,t� . �96�

Here, we have defined � as

� 

u0

uS
�̄ , �97�

where the quantity � is independent of � and its value can be
determined from the Langevin model we study. Note that the
coarse-grained hydrodynamic equation does not possess the
detailed balance property for any moving frame except for
the case where �=0.

D. Correlation function

In this subsection, we calculate the equal-time correlation
function C0�r� of the coarse-grained density field for the two
above-mentioned cases, case �i� �int�� and case �ii� �int
��. We first define the space-time correlation function as

C�r,�� 
 ���x,t���x + r,t + ��	 , �98�

where ��x , t� represents the deviation of the density field
from the average value �̄ as follows:

��x,t� 
 Q̃�x,t� − �̄ . �99�

In Eq. �98�, we assume that the statistical properties of
��x , t� are translational invariant in the space and time direc-
tions.

Hereinafter, we denote the Fourier transformation of a
function f�x , t� as

f̂�k, � =� d2x dt f�x,t�e−ik·x−i t. �100�

We also use the same notation for the Fourier transformation
of a function f�x� as follows:

f̂�k� =� d2x f�x�e−ik·x. �101�

Then, we can derive the relation

Ĉ�k, ��2!�3�2�k + k���� +  �� = ��̂�k, ��̂�k�, ��	 .

�102�

Further, the equal-time correlation function C0�r� is given by

C0�r� =� d2k

�2!�2 Ĉ0�k�eik·r =� d2k

�2!�2

d 

2!
Ĉ�k, �eik·r.

�103�

In the argument below, we first calculate Ĉ�k , � from the
coarse-grained hydrodynamic equations for cases �i� and �ii�,
and we derive C0�r� using Eq. �103�.

1. Case (i)

Let us consider the case �int��. Substituting Eq. �99� into
the continuity equation expressed by Eq. �65� with Eq. �87�,
we can obtain the equation for �. We further linearize the
obtained equation. Then, the resultant equation becomes

��

�t
= − �

�=1

2
�J�

�x�

, �104�

with the current J� expressed as

J1�x,t� = vs� − D
��

�x1
− D

��̄�1 − ��
T

� d2y
�u�x − y�

�x1
��y,t�

+ ��̄�1�x,t� ,

J2�x,t� = −
T

�

��

�x2
−

��̄

�
� d2y

�u�x − y�
�x2

��y,t� + ��̄�2�x,t� .

�105�

The Fourier transform of the evolution equation is written
as

�̂�k, � = G�k, ��− i��̄k · �̂�k, �� . �106�

Here, G�k , � is the Green function calculated as

1

G�k, �
= i� + vsk1� + g��k�Dk1

2 + g0�k�
T

�
k2

2, �107�

where we have defined g��k� as

g��k� 
 1 +
��̄û�k�

T
�1 − �� . �108�

Using the relation

��̂��k, ��̂	�k�, ��	 = �2!�32B�	�2�k + k���� +  �� ,

�109�

we obtain

Ĉ�k, � = 2�̄�G�k, ��2�Dk1
2 +

T

�
k2

2� . �110�

Integrating Eq. �110� with Eq. �107� over the frequency, we
calculate

Ĉ0�k� = �̄
g�/2�k�

g��k�g0�k�
+ ��̄�

�̄û�k�
2T

1

g��k�g0�k�

�
g��k�Dk1

2 − g0�k��T/��k2
2

g��k�Dk1
2 + g0�k��T/��k2

2 . �111�

The asymptotic behavior in the range �k���int
−1 in Eq.

�111� is evaluated as

SYSTEMATIC DERIVATION OF COARSE-GRAINED¼ PHYSICAL REVIEW E 74, 031105 �2006�

031105-9



Ĉ0�k� � �̄
g�/2�0�

g��0�g0�0�
+ ��̄�

�̄û�0�
2T

1

g��0�g0�0�

�
g��0�Dk1

2 − g0�0��T/��k2
2

g��0�Dk1
2 + g0�0��T/��k2

2 . �112�

From this expression, the asymptotic form of C0�r� in the
range �r���int is derived as

C0�r� � −
��̄2û�0��

2!T��g��0�g0�0��3DT/�

�
�g��0�D�−1r1

2 − �g0�0��T/���−1r2
2

��g��0�D�−1r1
2 + �g0�0��T/���−1r2

2�2 , �113�

where r= �r1 ,r2�. This represents a long-range correlation of
the type 1/r2.

2. Case (ii)

Next, let us consider the case �int��. In this case, we
obtain the continuity equation for � with the current J� ex-
pressed as

J1�x,t� = �vs + 2�̄���� − D
��

�x1
+ ��̄ + ��x,t��1�x,t�

+ ���2�x,t� ,

J2�x,t� = −
T

�

��

�x2
+ ��̄ + ��x,t��2�x,t� . �114�

Further, for simplicity, we assume that the � dependence of
the noise term can be neglected. Then, the evolution equation
coincides with the special case of that investigated in Ref.
�10�, where the fluctuation-dissipation relation of the second
kind is satisfied. According to the result of Ref. �10�, the
equal-time correlation function is not modified by the inter-
action effects up to the second order of � in this case �see Eq.
�B2� in Ref. �10��. Thus, we conclude that there is no long-
range correlation within this approximation.

IV. CONCLUDING REMARK

The main achievement of this study is the derivation of
the coarse-grained fluctuating hydrodynamic equation for the
driven many-body Langevin system. In the two asymptotic
cases for the interaction range between particles, which are
given by Eqs. �75� and �89�, we derived the two expressions
of particle current, Eqs. �87� and �96�, respectively, with the
continuity equation expressed by Eq. �65�. Using the ob-
tained evolution equations, we calculated the equal-time cor-
relation function of the coarse-grained density field for each
case. We found that this correlation function exhibits the
long-range correlation of the type r−d in the case given by
Eq. �75�, while no such behavior was observed in the case
given by Eq. �89�.

In order to understand the connection between the two
qualitatively different behaviors, we need to calculate the
correlation function without focusing on the limiting cases.
Although we can construct the function ū�� ,X� from an ar-

bitrary interaction potential u�x� by means of the method
developed in Appendix B, it was not easy to develop a sys-
tematic and generally applied perturbation expansion that
leads to the correlation function. The problem will be studied
in the future.

We derived the coarse-grained fluctuating hydrodynamic
equation by applying a singular perturbation method to a
stochastic partial differential equation. The method is stan-
dard except for the treatment of space-time noise �see Ap-
pendix B�. We expect that our method can be used to inves-
tigate other related problems such as phase diffusion
behavior in periodic pattern formations under the influence
of noise. We also note that the derived coarse-grained fluc-
tuating hydrodynamic equations in this study contain nonlin-
ear functions of f such as vs, D, B�, �, and �. Therefore, we
can discuss the system behavior in a nonlinear range with
respect to f .

The long-range correlation we obtained for the case given
by Eq. �75� has the essentially same mechanism as that of
Ref. �20� which studied the system consisting of two Brown-
ian particles under an external force. Thus, the result in this
paper is regarded as an extension of that in Ref. �20�, al-
though the Fokker-Plank equation was analyzed in this ref-
erence. On the other hand, the long-distance behavior for the
case given by Eq. �89� might be strange, because it has been
speculated that an anisotropic system without the detailed
balance condition generically exhibits the long-range corre-
lation �8�. Here, it is noteworthy that the long-range correla-
tion of the type r−d does not appear in driven lattice gases
with the evolution rule called an exponential method, while
it appears in the cases of a heat bath method and a Metropo-
lis method �11�. It might be interesting to find a connection
of our result with that reported in Ref. �11�.

Our calculation result for the correlation function given
by Eq. �111� provides the functional form of its short-range
part. In contrast to the long-range part, the short-range part
depends on the details of the system such as the selection of
the interaction potential. Such a nonuniversal part has never
been investigated intensively. Here, let us recall that the sta-
tistical properties of density fluctuations are described by the
free energy function of the system if the system is in equi-
librium. Therefore, it might be expected that the short-range
part of the correlation function is related to a thermodynamic
function extended to nonequilibrium steady states. Although
thermodynamics in nonequilibrium steady states has not yet
been established, there exists one promising approach to con-
struct a consistent framework whose validity can be checked
experimentally �13�. According to this framework, the statis-
tical properties of density fluctuations can be described by an
extended free energy determined operationally when the ef-
fect of the long-range correlation is removed. Indeed, by nu-
merical experiments on a driven lattice gas, it was demon-
strated that the intensity of density fluctuations of a particular
type is determined by an extended free energy �12�, and this
was proved in Ref. �13�. We expect that a similar analysis
can be performed for the Langevin system under investiga-
tion in this study. The calculation of the short-range part of
the correlation function is indispensable in this analysis.

The most ambitious goal is to provide a unified descrip-
tion of density fluctuations in an elegant manner. Even if the
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short-range part of the statistical property of density fluctua-
tions is determined by an extended thermodynamic function,
the long-range correlation that destroys the extensive nature
of the system is obviously out of thermodynamic consider-
ation. Here, it should be noted that a variational principle
referred to as the additivity principle is effective to describe
the long-range behavior of density fluctuations in non-
equilibrium lattice gases �21,22�. Although we do not know a
class of models to which this principle can be applied, it is
interesting to determine whether this principle can be applied
to the Langevin system under investigation.
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APPENDIX A: FLUCTUATING HYDRODYNAMICS FOR A
FINE-GRAINED DENSITY FIELD

We derive the evolution equation for a fine-grained den-
sity field from the Langevin equation given by Eq. �1�. Math-
ematically, the essence of the derivation is in employing the
Ito formula for arbitrary functions of the fluctuating variable
�23�, and the evolution equation for the fine-grained density
field is obtained by a standard treatment of Dirac’s � func-
tion. This approach was performed in Ref. �14�. Although
Ref. �14� provides sufficient information on the derivation of
the evolution equation for a fine-grained density field, we
present a different method for the derivation in this appendix.
We find that this method is less mathematical, but more
pedagogical than the standard one.

Let 
t be a sufficiently small time interval, and set tn
=n
t. Then, from Eq. �1�, the movement of each particle
during the time interval, 
xi��tn�
xi��tn+1�−xi��tn�, can be
expressed as

�
xi��tn� = �� f −
�U�xi1�

�xi1
��1� − �

j�i

�u�xi − x j�
�xi�



�x�=x��tn��


t

+ Ŵi��tn� + O„�
t�3/2
… , �A1�

where

Ŵi��tn� = �
tn

tn+1

dt Ri��t� , �A2�

and it should be noted that the equality

Ŵi��tn�Ŵj	�tm� = 2�T�ij��	�nm
t �A3�

holds almost surely �23�.
Next, for the fine-grained density field �d�x , t� defined by

Eq. �3�, we obtain

���d�x,tn+1� − �d�x,tn�� = �
i�


xi��tn�
�

�xi�
�d�x,tn�

+
1

2�
i�

�
j	


xi��tn�
xj	�tn�

�
�

�xi�

�

�xj	
�d�x,tn� + O„�
t�3/2

… .

�A4�

Substituting Eq. �A1� into the above expression and using
Eq. �A3�, we derive

���d�x,tn+1� − �d�x,tn�� = − 
t
�

�x1
�� f −

�U�x1�
�x1

��d�x,tn�

+ 
t

�

�x
·� d2y �d�x,tn�

�u�x − y�
�x

��d�y,tn� + T
t� �2

�x1
2 +

�2

�x2
2�

��d�x,tn� −
�

�x
· W�x,tn�

+ O„�
t�3/2
… , �A5�

where we have defined

W��x,tn� 
 �
i=1

N

Ŵi��tn��2�x − xi� . �A6�

Note that W��x , tn� satisfies

�W��x,tn�W	�x�,tm�	 = 2�T�d�x,tn���	�2�x − x���mn
t .

�A7�

Finally, taking the limit 
t→0, we obtain

��d�x,t�
�t

= −
1

�

�

�x1
��−

�U�x1�
�x1

+ f��d�x,t�

+

1

�

�

�x
� d2y �d�x,t�

�u�x − y�
�x

�d�y,t� +
T

�
� �2

�x1
2

+
�2

�x2
2��d�x,t� −

�

�x
·�T�d�x,t�

�
��x,t� , �A8�

where ���x , t� satisfies Eq. �7�. It is easily confirmed that the
final expression is equivalent to Eq. �4� with Eq. �5�.

APPENDIX B: FUNCTION OF „� ,X…

In Sec. III A, we introduced the functions �̄�� ,X , t� and
ū�� ,X� corresponding to ��x , t� and u�x�, respectively. In
this appendix, we present a method to construct the function
of �� ,X�. For simplicity, we consider functions defined in a
one-dimensional interval, but the argument presented below
can be extended to functions in two-or higher-dimensional
regions.

Concretely, we construct a function �̄�� ,X� corresponding
to a function ��x�, where ��x� is defined in the interval
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�0,L� and �̄�� ,X� is defined in the region �0,��� �0,��. We
assume that there exists an integer N1 satisfying L=N1�. We
explain a numerical computation method to obtain the func-
tion �̄�� ,X� from ��x� without a rigorous mathematical ar-
gument.

We first divide the interval �0,L� into small segments
�ia , �i+1�a�, where 0� i�N0N1−1 and a=� /N0. For the
function ��x�, we set

�i 
 ��ia� . �B1�

Then, �i is regarded as a real-valued function from integers
0� i�N0N1−1. For each i, there exists a unique pair of the
integers i0 and i1 that satisfy

i = i1N0 + i0, �B2�

where 0� i0�N0−1 and 0� i1�N1−1. Hereinafter, i0 and i1
are regarded as functions of i. Using this notation, we define
the function �̄i0,i1

as

�̄i0,i1
= �i. �B3�

We expect that the function ��x� appearing in physics is
well approximated by using �i with a sufficiently small a.
Then, for the function ��x�, we define �̄�� ,X� by the relation

�̄��,X� = �̄i0,i1
, �B4�

with �� /a�= i0 and �XL /�2−� /��= i1. Here �x� is the Gauss
notation that represents the maximum integer less than x.
�Mathematically speaking, we should argue the limit a→0
and a class of functions carefully, but this argument is not
considered in this study�

Here, neglecting the irregularity arising from the Gauss
notation, we write conventionally

X �
�

L
��i1 + ai0� . �B5�

Using Eq. �B2�, this implies X��x. That is, the coordinate X
thus defined is the large-scale coordinate describing the long-
distance behavior. Next, we explain differentiation, integra-
tion, and noise for the functions of �� ,X�.

Differentiation. Let ��x� be a smooth function. The dif-
ferentiation of ��x� is approximated by ��i+1−�i� /a. We
then have

�i+1 − �i = �̄i0+1,i1
− �̄i0,i1

�B6�

for 0� i0�N0−2. From this, we derive

��x + a� − ��x� � �̄�� + a,X +
�

L
a� − �̄��,X� � ���̄��,X�a

+
�

L
a�X�̄��,X� + O�a2� , �B7�

where the approximation in the first line originates from the
discretization error and the fact that the irregularity of the
Gauss notation was not considered. Further, in the second
line, we have treated �̄�� ,X� as a differentiable function that

might be allowed in the appropriate limit a→0. From Eq.
�B7�, we obtain

�x��x� = ��� + ��X��̄��,X� . �B8�

Integration. Let ��x� be an integrable function. Then, we
calculate

� dx ��x� � a �
i=0

N0N1−1

�i = a �
i0=0

N0−1

�
i1=0

N1−1

�̄i0,i1

� a �
i0=0

N0−1

�
i1=0

N1−1

�̄�i0a,
�

L
��i1 + ai0��

� �
0

� d�

�
�

0

� dX

�
�̄��,X� , �B9�

where the irregularity originating from the Gauss notation is
not considered �the third line� and the limit a→0 and �
→0 is taken �the forth line�.

Coordinate-dependent noise. Let ��x , t� be Gaussian white
noise satisfying

���x,t���x�,t��	 = 2��x − x����t − t�� . �B10�

We set

�i�t� =
1

a
�

ai

a�i+1�

dx ��x,t� �B11�

with small a. For this discretized noise, we define �̄i0,i1
�t�

and �̄�� ,X , t� in the same manner as that for the case in

which �i=��ia�. Conventionally, we denote �̄�� ,X , t� as

�̄�� ,X , t� �see Sec. III A�. Based on the definitions described
above, we can derive

��̄��,X,t��̄���,X�,t��	 = 2����� − �����X − X����t − t�� .

�B12�

Let 
��� be a smooth function that satisfies 
�0�=
���.
We denote the Stratonovich product of 
��� and �̄�� ,X , t� as


��� � �̄�� ,X , t�. This product can be written by using the dis-

cretized form �i0,i1
with an additional definition �̄N0,i1

= �̄0,i1
. From this, we obtain

�
0

�

d� ���
��� � �̄��,X,t�� = 0. �B13�

This formula is used for obtaining Eq. �53�.

APPENDIX C: PROOF OF Eqs. (68)–(71)

In this appendix, we present the proofs of Eqs. �68�–�71�.
We first prove the key equality

d

d�
� b���

ps���
� + 1 = ��

0

� d��

�
I−�����−1

I+��� . �C1�

All the equations can be derived from Eq. �C1�.
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1. Proof of the key equality

We first derive an explicit form of b��� defined in Eq.

�61�. Applying M̂�0�† given by Eq. �41� to both the left- and
right-hand sides of Eq. �61�, we obtain the following differ-
ential equation for b���:

d

d�
� vs

ps���
b��� −

T

�

d ln ps���
d�

b��� +
T

�

db���
d�

� = vs�ps��� − 1�

−
T

�

dps���
d�

. �C2�

Integrating Eq. �C2�, we obtain the following first-order dif-
ferential equation for b:

vs

ps
b��� −

T

�

d ln ps���
d�

b��� +
T

�

db���
d�

= vs�H��� − � − K1�

−
T

�
ps��� , �C3�

where K1 is a constant whose value is determined later. Here,
H��� and V��� are defined as

H��� 
 �
0

�

d�� ps���� , �C4�

V��� 
 U��� − f� . �C5�

We introduce b̄ in the equation

b��� = ps����H��� − � + b̄���� , �C6�

and then rewrite Eq. �C3� as

vs�b̄��� + K1� +
T

�
ps����ps��� +

db̄���
d�

� = 0. �C7�

Using the equality

vspse
	V = −

T

�
ps

d

d�
�pse

	V� , �C8�

we obtain the solution of Eq. �C7� as

b̄��� = − K1 + ps���e	V����K2 − G���� , �C9�

where K2 is a constant that is determined later and G��� is
defined as

G��� = �
0

�

d�� e−	V����. �C10�

Substituting Eq. �C9� into Eq. �C6�, we write

b���
ps���

= H��� − � − K1 + ps���e	V����K2 − G���� .

�C11�

Now, K1 and K2 are determined from the conditions
�b ,�0�=0 and b�0�=b���. The results are as follows:

K2 =
1

1 − e	f�G��� , �C12�

K1 = �
0

� d�

�
�ps����H��� − �� + ps

2���e	V����K2 − G����� .

�C13�

Next, we note the identity

�
0

�

d�� �����e	f�� − �1 − e	f���
0

�

d�� �����e	f��

= e	f��
0

�

d�� ���� + ��e	f�� �C14�

for an arbitrary periodic function ���� with period �. Setting
�=e−	U in Eq. �C14�, we obtain

K2 − G��� =
1

1 − e	f�e−	V���I+��� . �C15�

Then, substituting Eq. �C15� into Eq. �C11� and multiplying
vs by both the left- and right-hand sides, we obtain

vs
b���
ps���

= vs�H��� − � − K1� −
T

���0

� d��

�
I−�����−1

ps���I+��� ,

�C16�

where we have used Eq. �15�.
On the other hand, we rewrite Eq. �C3� as

T

�
ps���� d

d�
� b���

ps���
� + 1
 = −

vs

ps
b + vs�H��� − � − K1� .

�C17�

Comparing Eqs. �C16� and �C17�, we obtain Eq. �C1�.

2. Proof of Eq. (70)

We can rewrite D in Eq. �58� as

D = vs�
0

� d�

�

b���
ps���

+
T

�
�

0

� d�

�
� d

d�
� b���

ps���
� + 1
ps��� .

�C18�

Then, substituting Eqs. �C16� and �C1� into Eq. �C18�, we
obtain

D = vs�
0

� d�

�
�H��� − �� − vsK1. �C19�

Substituting Eq. �C13� into Eq. �C19� and using Eq. �C15�,
we rewrite �C19� as

D = − vs�
0

� d�

�
ps

2���e	V���� 1

e	f� − 1
e−	V���I+���� ,

�C20�

where we have used the identity

�
0

� d�

�
�ps��� − 1��� − H���� = 0. �C21�

Finally, substituting Eqs. �15� and �16� into Eq. �C20�, we
obtain Eq. �70�.
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3. Proof of Eqs. (68), (69), and (71)

We first calculate the correlation function of �2�X , t� as follows:

��2�X,t��2�X�,t��	 =
T

�
�

0

� d�

�
�

0

� d��

�

�0���
�ps���

�0����
�ps����

��̄2��,X,t��̄2���,X�,t��	 =
T

�
�

0

� d�

�
�

0

� d��

�

�0����0����
�ps���ps����

2��2�2�X − X�����

− �����t − t�� =
2T

�
�2�2�X − X����t − t�� , �C22�

where we have used �B12�. Using Eqs. �64� and �67�, we obtain Eq. �69�.
Next, we consider the correlation function of ��X , t�+�1�X , t� as follows:

����X,t� + �1�X,t�����X�,t�� + �1�X�,t���	 =
T

�
�

0

� d�

�
�

0

� d��

�
� d

d�
� b���

ps���
� + 1
� d

d��
� b����

ps����
� + 1
�ps���ps����

���̄1��,X,t��̄1���,X�,t��	 =
2T

�
�

0

� d�

�
� d

d�
� b���

ps���
� + 1
2

ps����2�2�X − X����t − t�� .

�C23�

This corresponds to Eq. �68�.
Finally, substituting Eqs. �C1� and �15� into Eq. �68�, we obtain

B11 =
T

���0

� d�

�
I−����−3�

0

� d�

�
I−����I+����2. �C24�

Because the right-hand side of Eq. �C24� is invariant for the exchange of I+ and I− �see Ref. �18��, B11 in Eq. �C24� is equal
to D in Eq. �70�. This corresponds to Eq. �71�.
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